US009250864B2

a2 United States Patent 10) Patent No.: US 9,250,864 B2
Nadon et al. (45) Date of Patent: *Feb. 2, 2016
(54) RELATIONSHIP MANAGEMENT FOR DATA (56) References Cited
MODELING IN AN INTEGRATED
DEVELOPMENT ENVIRONMENT U.S. PATENT DOCUMENTS
(75) Inventors: Gaetan Nadon, Thornhill (CA); Dirk A. gég?ggg ﬁ é;}ggi %4;;2: cetal s 717122
Steelemann, Thornhill (CA); David A. 5481,722 A 1/1996 SKInnercccoocoerorvrs 717/122
Spriet, Toronto (CA) 5,557,730 A 9/1996 Frid-Nielsen
5,642,511 A 6/1997 Chowetal.cceoo.. 717/105
(73) Assignee: International Business Machines g’gj‘%’i }‘3 ﬁ 461; }gg; gecdkllilani ~~~~~~~~~~~~~~~~~~~~~~ 717/144
. ,740, rid-Nielsen
Corporation, Armonk, NY (US) 5937,189 A 8/1999 Branson etal. 717/101
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent is extended or adjusted under 35
U.S.C. 154(b) by 935 days. FOREIGN PATENT DOCUMENTS
This patent is subject to a terminal dis- EP 321000 A2 6/1989 ... GOGF 9/44
claimer. OTHER PUBLICATIONS
(21) Appl. No.: 12/259,159 “Troubleshooting LNK2001 or 1.2029 Unresolved External Errors,”
. May 31, 2005, Microsoft, Microsoft Knowledge Base Article ID
(22) Filed: Oct. 27,2008 138400, Accessed Aug. 30, 2007 at http://support. Microsoft.com/
kb/138400.
(65) Prior Publication Data (Continued)

US 2009/0049080 A1 Feb. 19, 2009
Primary Examiner — James D Rutten
(74) Attorney, Agent, or Firm — Winstead, P.C.
Related U.S. Application Data
L L (57) ABSTRACT
(63) Continuation of application No. 10/752,964, filed on . .
Jan. 7. 2004. now Pat. No. 7.478.370. A system and method of relationship management for data
’ ’ T modeling in an integrated development environment is pro-
vided. A method of incorporating a program code file

(30) Foreign Application Priority Data) A h !
includes generating a relational schema of symbols in the
Dec. 17,2003 (CA) cooveeoeeeeeeeeerrereeseeeeeeeeeeee 2453722 program code file based on a framework for models in the
integrated development environment, the schema comprising
(51) Int.CL atleast two related tables; determining a relationship between
GOGF 9/44 (2006.01) the at least two tables in the relational schema; adding defi-
GO6F 17730 (2006.01) nitions from the program code file for symbols in the rela-

tional schema to a definition set retaining definitions of sym-

(52) US.CL bols; and producing proxy definitions for use with the

CPC e GO6F 820 (2013.01) definition set for each symbol in the program code file without
(58) Field of Classification Search a definition in the definition set.

None

See application file for complete search history. 4 Claims, 8 Drawing Sheets

200

IDE

FILE BUILD ME('ZI-IANIS!%II18

CONTROLLER }28
246

216
IGE -EDITOR

MECHANISM| 509
LIST BUILD |
MECHANISM

240

SCHEMA FORMATION

224 MECHANISM
RETYRENCED FUB
SYMBOLS
MECHANISM
23

DEPENDENCY UPDATE

ECHANISM i4
REMOVE ‘CHANGE
MECHANISM || MECHANISM

PROXY
M 157
234 PROXY
OPERATION
VALIDATION MECHANISM MECHANISM
DEPENDENCY VALIDATION 256 258
232 HANISM __~286 FROXY
REFERENCE || DEPENDENCY STRUCTURE
MATCH LIST MECHANISM
MECHANISM || MECHANISM

RELATIONSHIP 26
TABLE MECHANISM

210

MODELING MECIIANISB} "

GENERATEMOBEL |
MECBANISM |

US 9,250,864 B2
Page 2

(56)

5,995,969
6,182,281
6,182,283
6,351,848
6,374,401
6,542,167
6,757,887
6,829,760
6,966,048
2002/0046400
2002/0170041
2003/0018951
2003/0101195
2003/0233585
2005/0091589

References Cited

U.S. PATENT DOCUMENTS

A

Bl
Bl
Bl
Bl
Bl
Bl
Bl
B2
Al
Al
Al
Al
Al
Al

11/1999
1/2001
1/2001
2/2002
4/2002
4/2003
6/2004

12/2004

11/2005
4/2002

11/2002
1/2003
5/2003

12/2003
4/2005

Lee et al.

Nackman et al. 717/116
Thomson ... 717/153
Chessincccocvevennene, 717/140
Curtis

Darletet al. 715/762
Kaplanetal. 717/106
Bera

Bowerscocvveienninn, 717/101
Burch ..ocoovviviiiinn 717/154
Shann

Srivastava et al. 717/101
Linhart

Quicketal. ... 713/202
Ramaraoccccceenne 715/522

OTHER PUBLICATIONS

Dees et al., “Suitability of Microsoft Visual C++ Profession???” Jan.
24, 1996, comp.lang.c++ Usenet News, accessed Aug. 30, 2007 at
http://groups.google.com/group/comp.lang.c++/browse__thread/
8¢84913b25a7d993/a8b23572698d97¢6?Ink=st
&q=suitability+of+microsoft+visual ¢%2B%2B+1.0+professional
&num+1#a8b23572698d97¢6.

Horwitz and Teitelbaum, “Generating Editing Environments Based
on Relations and Attributes,” Oct. 1986, ACM Transactions on Pro-
gramming Languages and Systems, vol. 8, No. 4, pp. 577-608.
Muchnick, “Advanced Compiler Design and Implementation,” 1997,
Morgan Kaufmann Publishers, Inc., Chapter 3.

Office Action from U.S. Appl. No. 11/782,425 dated Apr. 25, 2011.

Office Action for Canadian Application No. 2,651,461 dated Jun. 9,
2011 from the Canadian Patent Office.

U.S. Patent Feb. 2, 2016 Sheet 1 of 8 US 9,250,864 B2
112\
INPUT/OUTPUT
UNIT
f 3
102___\ 104\ ¢
INPUT/OUTPUT
CPU MEMORY INTERFACE
1 1 106 j 1
A \ 4 JV
BUS

100 /

FIG. 1

U.S. Patent Feb. 2, 2016 Sheet 2 of 8

(]

US 9,250,864 B2

/200
IDE
FILE BUILD MECHANISM }28
LoAD |—218 Cabn ROLLER 216
202~ |MECHANISM| 320 |e—ai[CHANGE EDITOR
PARSE LIST BUILD DETECTION
MECHANISM || MECHANISM MECHANISM
236~
v 240 y 50
212 ._SAVE MECHANISM ﬁxﬁlﬁ)2
SCHEMA FORMATION MECHANISM
224 MECHANISM
REFERENCED PUBLIC 214
SYMBOLS SYMBOLS |l R
MECHANISM || MECHANISM >
DATABASE
248
DEPENDENCY UPDATE 4 44
252 ~ MECHANISM 1 ﬂ
REMOVE CHANGE DEFINITION SET
SYMBOLS SYMBOLS MECHANISM
MECHANISM || MECHANISM
230/ 206
Ar N\
PROXY
MECHANISM
234 PROXY
AN y OPERATION
208~ VYALIDATION MECHANISM MECHANISM
DEPENDENCY VALIDATION 256 7 258
232N MECHANISM 266 PROXY
REFERENCE || DEPENDENCY STRUCTURE
MATCH LIST MECHANISM
MECHANISM [| MECHANISM
RELATIONSHIP 1226 |7
TABLE MECHANISM AN y.x
MODELING MECHAleng
242
GENERATE MODEL
i MECHANISM

FIG. 2

U.S. Patent Feb. 2, 2016 Sheet 3 of 8 US 9,250,864 B2

[LOAD FILE AS AN INPUT STREAM 1 3%

] 304
{ MAKE A LIST OF ALL PUBLIC SYMBOLS IN THE FILE +

[
[MAKE A LIST OF ALL REFERENCED SYMBOLS IN THE FILE |- 2%

[DETERMINE A CAUSE FOR UPDATING THE FILE }~ 308

iS THE
FILE UPDATE CAUSE “REMOVE” OR
“CHANGE”"?

Y’ S
REMOVE PUBLIC SYMBOLS IN THE PUBLIC SYMBOLS LIST | 312
FROM A PUBLIC SYMBOLS TABLE

Y
REMOVE REFERENCED SYMBOLS IN THE REFERENCED 314
SYMBOLS LIST FROM A REFERENCED SYMBOLS TABLE

Y
REMOVE PUBLIC SYMBOL DEFINITIONS FROM THE | 316
DEFINITIONS SET
|1
VALIDATE A RELATIONSHIPS TABLE TO REMOVE PUBLIC 318
SYMBOLS IN THE PUBLIC SYMBOLS LIST AND REFERENCED |
SYMBOLS IN THE REFERENCED SYMBOLS LIST THEREFROM

320

FILE UPDATE CAUSE “ADD” OR
"CHANGE”?

322

324

U.S. Patent Feb. 2, 2016 Sheet 4 of 8 US 9,250,864 B2

| PARSE FILE TO EXTRACT PUBLIC SYMBOL DEFINITIONS }— 326
2

REPLACE PROXY DEFINITION WITH THE EXTRACTED

DEFINITION OF THE PUBLIC SYMBOLS TO THE DEFINITION |— 328

SET

@

{__PARSE FILE TO EXTRACT PUBLIC SYMBOL DEFINITIONS }— 330

\
ADDT TRACTED DEFINIT [0 PUBLIC SYMBOLS

TO THE DEFINITION SET FOR ALL SYMBOLS NOT IN THE ~ }— 332
DEFINITION SET

—
-
Y

ARE THE
REFERENCED SYMBOLS IN THE REFERENCED
SYMBOLS LIST IN A DEFINITION

334

336

PARSE FILE TO EXTRACT REFERENCED SYMBOL 338
INFORMATION FROM THE FILE

CREATE A PROXY DEFINITION FOR THE EXTRACTED | 340
REFERENCE SYMBOL INFROMATION

\ 4

INSERT THE CREATED PROXY DEFINITION FOR THE ; 342
REFERENCED SYMBOL IN THE DEFINITION SET

c

FIG. 3B

J

300

U.S. Patent

Feb. 2, 2016 Sheet 5 of 8

US 9,250,864 B2

PARSE FILE TO EXTRACT REFERENCED SYMBOL
INFROMATION

CREATE A PROXY DEFINITION FOR THE EXTRACTED
REFERENCE SYMBOL INFORMATION

¥

ADD THE CREATED PROXY DEFINITION FOR THE
EXTRACTED REFERENCED SYMBOL TO THE DEFINITION SET

o

¥

STORE THE PUBLIC SYMBOLS IN THE PUBLIC SYMBOLS LIST
INTO THE PUBLIC SYMBOLS TABLE

'

STORE THE REFERENCED SYMBOLS IN THE REFERENCED
SYMBOLS LIST INTO THE REFERENCED SYMBOLS TABLE

]

DETERMINE RELATIONSHIPS BETWEEN THE PUBLIC
SYMBOLS TABLE AND THE REFERENCED SYMBOLS TABLE

!

ADD THE PETERMINED RELATIONSHIPS TO THE
RELATIONSHIPS TABLE

¥

VALIDATE THE RELATIONSHIPS TABLE BY MATCHING
DEFINITIONS AND REFERENCES

'

CREATE A LIST FOR FILES WHICH ARE DEPENDENT ON
PUBLIC SYMBOLS DEFINED IN THE FILE

A 4

CONTINUE WITH OTHER PROCESSING

300/

FIG. 3C

U.S. Patent Feb. 2, 2016 Sheet 6 of 8 US 9,250,864 B2

402
LOCATE ALL REFERENCED SYMBOLS IN THE FILE -

A 4

SEARCH THE PUBLIC SYMBOLS TABLE FOR THE LOCATED [~ 404
REFERENCED SYMBOLS

406

INSERT FILE LOCATION FROM THE PUBLIC SYMBOLS TABLE /408
IN THE RELATIONSHIPS TABLE FOR THE REFERENCED
SYMBOL AS A “DOWN” RELATIONSHIP

¥

PRODUCE ERROR MESSAGE SINCE REFERENCED SYMBOL 410
DOES NOT HAVE A DEFINITION IN THE PUBLIC SYMBOLS [
TABLE

FIG. 4

U.S. Patent Feb. 2, 2016 Sheet 7 of 8 US 9,250,864 B2

502
LOCATE ALL PUBLIC SYMBOLS IN THE FILE -

L

SEARCH THE REFERENCED SYMBOLS TABLE FORTHE |/ 504
LOCATED PBULIC SYMBOLS

506

INSERT FILE LOCATION FROM THE REFERENCED SYMBOLS e 508
TABLE IN THE RELATIONSHIPS TABLE FOR THE REFERENCED
SYMBOL AS A “UP” RELATIONSHIP

K

CONTINUE PROCESSING 510

FIG. 5

U.S. Patent Feb. 2, 2016 Sheet 8 of 8 US 9,250,864 B2

214

DATABASE

604 602 608

REFERENCED PUBLIC
SYMBOLS TABLE SYMBOLS TABLE DEFINITION SET
DEPENDENCIES RELATIONSHIP
LISTS TABLE
L
L
606
610

FiG. 6

US 9,250,864 B2

1
RELATIONSHIP MANAGEMENT FOR DATA
MODELING IN AN INTEGRATED
DEVELOPMENT ENVIRONMENT

CROSS REFERENCE TO RELATED
APPLICATIONS

The present application is a continuation application of
pending U.S. patent application Ser. No. 10/752,964, which
was filed on Jan. 7, 2004, which is assigned to the assignee of
the present invention. The present application claims priority
benefits to U.S. patent application Ser. No. 10/752,964. U .S.
patent application Ser. No. 10/752,964 claims priority under
35U.S.C. §119(a) to Canadian Patent Application No. 2,453,
722 filed Dec. 17, 2003.

FIELD OF THE INVENTION

The present invention relates to the field of data modeling
in integrated development environments.

BACKGROUND OF THE INVENTION

An integrated development environment (IDE) provides a
set of tools to assist in the development of a computer pro-
gram. Such an environment generally supports various tasks
and often various programming languages. Given the integra-
tion between various files forming a computer program
project, each time a file is changed the file is validated to
ensure that information on the file in the environment is
correct. The validation involves parsing each file that changed
as well as each file that the changed file references. If there are
N changed files that all reference each other then N*N parses
are performed. Since file-to-file dependencies may not be
maintained, all of these files are generally parsed. To ensure
correctness of the data in a workspace in the IDE, the time for
such validation is not amortized over other operations. With a
workspace composed of many files or large files, it can be
cumbersome to wait for validation of a file, involving com-
pletely parsing many files, after each change before proceed-
ing with other actions.

SUMMARY OF THE INVENTION

In accordance with an aspect of the present invention there
is provided a method of incorporating a program code file into
an integrated development environment, including: generat-
ing a relational schema of symbols in the program code file
based on a framework for models in the integrated develop-
ment environment, the schema comprising at least two related
tables; determining a relationship between the at least two
tables in the relational schema; adding definitions from the
program code file for symbols in the relational schema to a
definition set retaining definitions of symbols; and producing
proxy definitions for use with the definition set for each
symbol in the program code file without a definition in the
definition set.

In accordance with an aspect of the present invention there
is provided a method of managing relationships between
program code files in an integrated development environ-
ment, including: detecting a change in one of the program
code files as being one of “add”, “remove” or “update”,
removing symbols in the changed program code file from a
relational schema if the change is one of “remove” or
“update”, the relational schema comprising at least two
related tables with symbols from the program code files based
on a framework for models in the integrated development

15

20

30

40

45

2

environment; incorporating symbols from the changed pro-
gram code file in the relational schema if the change is one of
“add” or “update”, verifying a relationship between the at
least two tables in the relational schema; removing definitions
from a definition set for symbols from the changed program
code file that were previously removed from the relational
schema, the definition set retaining symbol definitions for the
program code files; adding definitions to the definition set
from the changed program code file for symbols previously
incorporated into the relational schema; and producing proxy
definitions for use with the definition set for each symbol in
the changed program code file previously incorporated into
the relational schema without a definition in the definition set.

In accordance with an aspect of the present invention there
is provided a method of managing relationships between
program code files in an integrated development environ-
ment, including: modifying a relational schema according to
a change in one of the program code files, the relational
schema comprising at least two related tables with symbols
from the program code files based on a framework for models
in the integrated development environment; determining a
relationship between the at least two tables in the relational
schema; modifying a definition set according to the change to
include definitions from the changed program code file for
symbols therefrom in the relational schema into the definition
set, the definition set retaining symbol definitions for the
program code files; and producing proxy definitions for use
with the definition set for each symbol in the changed pro-
gram code file without a definition in the definition set.

In accordance with an aspect of the present invention there
is provided a system for incorporating a program code file
into an integrated development environment including: a save
mechanism for modifying a relational schema according to a
change in one of the program code files, the relational schema
comprising at least two related tables with symbols from the
program code files based on a framework for models in the
integrated development environment; a validation mecha-
nism for determining a relationship between the at least two
tables in the relational schema; a dependency set mechanism
for modifying a definition set according to the change to
include definitions from a changed program code file for
symbols therefrom in the relational schema into the definition
set, the definition set retaining symbol definitions for the
program code files; and a proxy mechanism for producing
proxy definitions for use with the definition set for each
symbol in the changed program code file without a definition
in the definition set; a database for retaining the relational
schema, the relationship between the at least two tables and
the definition set; and a controller for coordinating the save
mechanism, the validation mechanism, the dependency set
mechanism, the proxy mechanism and communications with
the database.

In accordance with an aspect of the present invention there
is provided a computer-readable medium having computer-
executable instructions for incorporating a program code file
into an integrated development environment, including: gen-
erating a relational schema of symbols in the program code
file based on a framework for models in the integrated devel-
opment environment, the schema comprising at least two
related tables; determining a relationship between the at least
two tables in the relational schema; adding definitions from
the program code file for symbols in the relational schema to
a definition set retaining definitions of symbols; and produc-
ing proxy definitions for use with the definition set for each
symbol in the program code file without a definition in the
definition set.

US 9,250,864 B2

3

In accordance with an aspect of the present invention there
is provided a computer-readable medium having computer-
executable instructions for managing relationships between
program code files in an integrated development environ-
ment, comprising: detecting a change in one of the program
code files as being one of “add”, “remove” or “update”,
removing symbols in the changed program code file from a
relational schema if the change is one of “remove” or
“update”, the relational schema comprising at least two
related tables with symbols from the program code files based
on a framework for models in the integrated development
environment; incorporating symbols from the changed pro-
gram code file in the relational schema if the change is one of
“add” or “update”, verifying a relationship between the at
least two tables in the relational schema; removing definitions
from a definition set for symbols from the changed program
code file that were previously removed from the relational
schema, the definition set retaining symbol definitions for the
program code files; adding definitions to the definition set
from the changed program code file for symbols previously
incorporated into the relational schema; and producing proxy
definitions for use with the definition set for each symbol in
the changed program code file previously incorporated into
the relational schema without a definition in the definition set.

In accordance with an aspect of the present invention there
is provided a computer-readable medium having computer-
executable instructions for managing relationships between
program code files in an integrated development environ-
ment, including: modifying a relational schema according to
a change in one of the program code files, the relational
schema comprising at least two related tables with symbols
from the program code files based on a framework for models
in the integrated development environment; determining a
relationship between the at least two tables in the relational
schema; modifying a definition set according to the file
change to include definitions from the changed program code
file for symbols therefrom in the relational schema into the
definition set, the definition set retaining symbol definitions
for the program code files; and producing proxy definitions
for use with the definition set for each symbol in the changed
program code file without a definition in the definition set.

Proxy definitions are produced for each symbol in the
changed program code file that does not have a definition in
the definition set.

Other aspects and features of the present invention will
become apparent to those ordinarily skilled in the art upon
review of the following description of specific embodiments
of the invention in conjunction with the accompanying fig-
ures.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an exemplary computing environment in which
the present invention may be implemented;

FIG. 2 is a system diagram of an integrated development
environment including a system for incorporated files there-
into;

FIG. 3A to C show a method for incorporating a file into an
integrated development environment;

FIG. 4 shows a method for validating a relationships table
in an upwards direction;

FIG. 5 shows a method for validating the relationships
table in a downwards directions; and

FIG. 6 shows a pictorial representation of the contents of a
database of the integrated development environment of FIG.
2.

10

15

20

25

30

35

40

45

50

55

60

65

4

DETAILED DESCRIPTION OF EMBODIMENTS
OF THE PRESENT INVENTION

FIG. 1 illustrates a configuration of a computer 100 in
which the present invention may be implemented.

The computer 100 includes a central processing unit (CPU)
102, a memory 104, an input/output interface 106 and a bus
108. The CPU 102, the memory 104 and the input/output
interface 106 are connected with one another via the bus 108.
The input/output interface 106 is configured so that it can be
connected to an input/output unit 112.

The present invention may be embodied in a program
stored in, for example, the memory 104. Alternatively, the
present invention may be recorded on any type of recording
medium such as a magnetic disk or an optical disk. The
present invention recorded on such a recording medium is
loaded to the memory 106 of the computer 100 via the input/
output unit 112 (e.g. a disk drive).

The CPU 102 can be a commercially available CPU or a
customized CPU suitable for operations described herein.
Other variations of CPU 102 can include a plurality of CPUs
interconnected to coordinate various operations and func-
tions. The CPU 102 contains resources for the execution of
the present invention including registers 110 that enable basic
functions such as placing a value into a specified register
(referred to as a “load” operation), copying a value stored in
aspecified register to a specified memory location (referred to
asa “store” operation), and performing arithmetic operations,
such as addition and multiplication, on values stored in
memory locations and registers. The computer 100 serves as
an apparatus for performing the present method by the CPU
102 executing the present invention.

FIG. 2 is a system diagram of an integrated development
environment (IDE) 200 in which a computer program may be
represented as a model showing components of the program
(e.g. objects in an object-oriented project) and relationships
therebetween. The model may be presented in the IDE 200 as
a graph data structure of components in which the compo-
nents have named properties and relationships to other com-
ponents. Each model may be composed of many files, each of
which may contain multiple components. The model is cre-
ated when files that form the project are incorporated into the
IDE 200. The IDE 200 includes a workspace (not shown) in
which multiple models may be presented to a user.

The IDE 200 includes a controller 228, a file build mecha-
nism 236, a save mechanism 240, a modeling mechanism
210, a validation mechanism 234, a symbol resolve mecha-
nism 250, a proxy mechanism 206, a definition set mecha-
nism 230, an editor 216 and a database 214. The controller
228 coordinates the various other components in the IDE 200
and directs the data and control flow therebetween. The file
build mechanism 236 incorporates a new or changed program
code file 204 into the IDE 200. The save mechanism 240 saves
the incorporated file 204 into the database 214. The modeling
mechanism 210 creates a model from the file 204, including
adding new files to the model and incorporating changes to
existing files into the model. The validation mechanism 234
validates the file 204 to provide all current references and
definitions of data and objects to maintain relationships
between files in the IDE 200. The symbol resolve mechanism
250 makes resolutions in the file 204 as to the definition of
objects and data therein. The definition set mechanism 230
maintains a definition set with definitions from files in the
IDE 200. The definition set is a collection of symbol defini-
tions that provides a view of saved content in the IDE 200
workspace. The editor 216 enables a file in a model to be
changed.

US 9,250,864 B2

5

The controller 228 comprises a change detection mecha-
nism 246 that monitors the workspace of the IDE 200. Each
model in the workspace is composed of multiple files. The
change detection mechanism 246 monitors the status of each
of the models and the files of which they are composed to
detect a change in either the model or in one of the files. This
change can be in the form of a request to add a new file to a
model or to the workspace, a request to remove a file from a
model or the workspace, or an editorial change to a file in one
of the models in the workspace (such as would be imple-
mented through the editor 216). Monitoring a change in a file
in one of the models in the workspace may be performed by
monitoring the profile of the file currently in the workspace
and comparing it with the profile of the actual file, assessing
file size and last save data and time.

When a request to add the new or changed file 204 in one of
the models is detected by the change detection mechanism
246, the controller provides the file build mechanism 236
with the location of the file 204. If the request detected by the
change detection mechanism 246 is to remove the file 204
from one of the models or the workspace, then the location
and identity of this file 204 is provided directly to the save
mechanism 240.

The file build mechanism 236 comprises a load mechanism
218, a parse mechanism 202 and a list build mechanism 220,
all of which function to incorporate the new or changed file
204 into the IDE 200. The load mechanism 218 accepts the
file 204 and creates an input data stream from the contents of
the file 204. The list build mechanism 220 identifies all ref-
erences and definitions of symbols, such as data and objects,
and creates a list of public symbols and referenced symbols in
the file 204. The public symbols in the file 204 are definitions
of' symbols (e.g. data and objects) that are accessible to other
files. Referenced symbols in the files 204 represent those
symbols used by the file 204 but defined elsewhere (e.g.
public symbols from other files). The parse mechanism 202
parses the file 204 to identify and extract references and
definitions of symbols therein. The references and definitions
may be determined by searching for symbols in the input
stream recognized as providing a reference or definition.

The parse mechanism 202 parses the file 204 to obtain
definitions for public symbols and information on referenced
symbols. The information on the referenced symbols may
include any interface information that can be garnered from
the reference in the file 204.

The lists (public symbols and referenced symbols) are
provided to the save mechanism 240 for storage in the data-
base 214. The save mechanism 240 comprises a schema for-
mation mechanism 212, and a dependency update mechanism
248. If the file 204 is a new file being incorporated into the
IDE 200 then the list is provided directly to the schema
formation mechanism 212; otherwise, the list is provided to
the dependency update mechanism 248. The schema forma-
tion mechanism 212 comprises a public symbols mechanism
222, and a referenced symbols mechanism 224 for creating a
relational schema in the database 214 based on the contents of
the public symbols list and the referenced symbols list.

The schema formation mechanism 212 receives the lists
and examines the database 214 based on the lists. The data-
base 214 contains a public symbols table formed with public
symbol definitions and the location of the file 204 in which the
symbol is defined, a referenced symbols table with the sym-
bol references from the list and the location of the file 204 that
is referencing the symbols, and a definition set containing the
definition for all symbols that have been defined or referenced
in the file 204 forming the model. The location of the file 204
in both the public symbol table and the referenced symbols

15

20

25

40

45

6
table may be in the form of a universal resource indicator
(URI) identifying the file that defines the symbol as well as
the location of the file. An identifier for the file 204 may be
included in the public symbols table and the referenced sym-
bols table in the form of a name, location, etc.

The schema formation mechanism 212 searches the data-
base 214 to determine if the entries in the public symbols and
the referenced symbols list are in the definition set. This
information is provided to the public symbols mechanism
222 and the referenced symbols mechanism 224 along with
the appropriate list.

The public symbols mechanism 222 assesses the type of
entry for the public symbol in the definition set. If a previous
file contained the definition for the public symbol then the
definition set will have an actual definition for that symbol. In
this case there may be two definitions for the public symbol in
the model. This will prompt an error message to be presented
to the user indicating that there are two definitions for a public
symbol. If the previous file only contained a reference to the
symbol then there may be a proxy definition for the symbol in
the definition set. The proxy definition includes any informa-
tion about the symbol that can be garnered from the reference.
The proxy definition shows the known public interface but not
necessarily the body of the symbol definition. If the entry in
the definition set is a proxy definition then the public symbols
mechanism 222 obtains file parsing data from the parse
mechanism 202. The definition of the public symbol is
obtained from the parsed data. This definition is added to the
definition set to replace the proxy definition so that the defi-
nition set now contains an actual definition of the public
symbol.

If the public symbol does not have a definition in the
definition set then the public symbols mechanism 222 obtains
the public symbols definition from the parse mechanism 202.
This definition is added to the definition set.

The pubic symbols mechanism 222 also stores the entries
of the public symbols list from the list build mechanism 220
in the public symbols table in the database 214.

The referenced symbols mechanism 224 also assesses the
type of entry for the referenced symbols in the definition set.
If a previous file contained the definition for the referenced
symbol then the definition set contains an actual definition for
the referenced symbol.

If the definition set contains the actual definition for the
symbol, the existing definition in the definition set is retained.
If the entry in the definition set is a proxy definition then the
existing proxy definition is replaced in the set. If the refer-
enced symbol does not have a proxy or actual definition in the
set then a proxy definition is created for the definition set. The
proxy mechanism 206 in the IDE 200 creates the proxy defi-
nition.

After the public symbols table and the referenced symbols
table have been created or populated based on the file 204,
then the tables are validated by the validation mechanism 234.
A map of the relationships between files is created in the
database 214 by the validation mechanism 234.

The public symbols table and the referenced symbols table
provide a store of the public symbol definitions and refer-
ences to symbols in the file 204 so that the file 204 is not
parsed by the file build mechanism 236 every time informa-
tion on the dependencies of the file 204 is requested.

Ifthe file 204 is a previously incorporated file that has been
changed or the request received by the controller 228 is to
remove the file 204, then the dependency update mechanism
248 coordinates the save and update process. The dependency
update mechanism 248 comprises a remove symbols mecha-

US 9,250,864 B2

7

nism 252 for removal of symbols in the file 204 from the
database 214 and a change symbols mechanism 254 for coor-
dinating changes.

The remove symbols mechanism 252 receives the location
and identifier for the file 204 to be removed from a model or
the workspace. The remove symbols mechanism 252
removes all public symbols defined in the file 204 from the
public symbols table and all referenced symbols in the file
204 are removed from the referenced symbols table. The
remove symbols mechanism 252 provides the validation
mechanism 234 with the location and identifier of the file 204
so that the dependencies of other files in the model can be
updated and validated based on the removal of this file 204.

The change symbols mechanism 254 receives the location
and identifier for the file 204 in the model or workspace that
has been changed. The change symbols mechanism 254 pro-
vides the location and identifier for the file 204 to the remove
symbols mechanism 252 so that all public symbols defined in
the file 204 are removed from the public symbols table and all
referenced symbols in the file 204 are removed form the
referenced symbols table. As with the case of file removal, the
remove symbols mechanism 252 provides the validation
mechanism 234 with the location and identifier of the file 204
so that the dependencies of other files in the model can be
updated and validated based on the removal of this file 204.
All of the existing information on the file 204 is removed from
the public symbols table and the referenced symbols table so
that these tables do not contain old information on the file 204
that has been changed. After this old information has been
removed the change symbols mechanism provides the loca-
tion and identifier for the file 204 that has been changed to
both the public symbols mechanism 222 and the referenced
symbols mechanism 224 so that the changed file 204 can be
parsed and the public symbol definitions and referenced sym-
bols in the file 204 can be included in the public symbols table
and the referenced symbols table.

The public symbols mechanism 222 interfaces with the
definition set mechanism 230 to examine the definition set to
determine if the public symbols in the changed file 204 are
defined in the definition set. The presence of a previous public
symbols definition prompt the public symbols mechanism
222 to produce an error message. If the public symbol is not
defined in the definition set then the public symbols mecha-
nism 222 co-ordinates parsing of the file 204 with the parse
mechanism 202 to extract the definition from the file 204.
This extracted definition is provided to the definition set
mechanism 230 for insertion into the definition set.

The referenced symbols mechanism 224 likewise inter-
faces with the definition set mechanism 230 to examine the
definition set to determine if the referenced symbols are
defined therein. The presence of an existing definition for a
referenced symbol in the definition set is assessed to deter-
mine if it is a proxy or actual definition. An actual definition
is retained whereas a proxy definition is replaced by a new
proxy definition from the file 204. If a referenced symbol
definition does not exist in the definition set then one is
created by the proxy mechanism 206. This proxy definition is
provided to the definition set mechanism 230 for insertion
into the definition set.

The definition set mechanism 230 interfaces with the pub-
lic symbols mechanism 222 and the referenced symbols
mechanism 224 to add and maintain definitions for the public
symbols and the referenced symbols in the definition set in the
database 214.

After the public symbols table and the referenced symbols
table have been repopulated, then the tables are validated by

10

15

20

25

30

35

40

45

50

55

60

65

8

the validation mechanism 234. The map of the relationship
between the tables is maintained by the validation mechanism
234.

The proxy mechanism 206 creates proxy definitions, or
skeleton definitions, for symbols in the file 204 that are not
resolved. A proxy definition includes a definition of the sym-
bol according to the information in the reference in the file
204. This proxy definition accelerated parsing of a file by
enabling parts of the referents of the symbol to be determined
from the public symbols table. The proxy mechanism 206
comprises a proxy structure mechanism 258 and a proxy
operation mechanism 256.

The proxy mechanism 206 receives information from the
referenced symbols mechanism 224 when a referenced sym-
bol that does not have a definition in the definition set is
encountered. The information provided by the referenced
symbols mechanism 224 may include sections of the file in
which the referenced symbol is used as well as the context in
which it is used (i.e. other associated symbols and relevant
information on these symbols). From this information the
proxy structure mechanism 258 and the proxy operation
mechanism 256 create a proxy definitions for the referenced
symbol that shows an interface for the symbol but not the
body of the definition of the symbol.

The proxy mechanism 206 extracts all reference informa-
tion for the symbol from the file 204 and provides this infor-
mation to the proxy structure mechanism 258 and the proxy
operation mechanism 256. The proxy structure mechanism
258 searches the references to determine the structure of the
symbol, including what is the type of the symbol (i.e. object
or specific type of data) and what might be contained in the
symbol (i.e. data in an object). The proxy operation mecha-
nism 256 searches the references to determine the function-
ality of the symbol including what inputs might be accepted
and what outputs might be produced (generally the type of the
input and output). Such information may be obtained from the
public symbols table in the database 214.

Ifthere was a previous proxy definition in the definition set
the proxy mechanism 206 may either replace the existing
definition with a new definition or may use the information
from the file 204 on the referenced symbol to enhance the
existing definition.

The proxy mechanism 206 may also include the proxy
definition in the file 204 that is used in the workspace of the
IDE 200 to accelerate parsing at a later time. A referenced
symbol with a definition in the definition set provides a dan-
gling reference since the definition for the symbol is not
known in the workspace of the IDE 200. Thus, since a defi-
nition is created (a proxy definition) for the symbol, memory
space in which a value can be retained is provided for the
symbol.

The validation mechanism 234, used after the public sym-
bols table and the referenced symbols table have been popu-
lated, creates and maintains a relationship table, thus provid-
ing the map of relationships between files and the tables. The
validation mechanism 234 comprises a relationship table
mechanism 226 and a dependency validation mechanism 208
which comprises a reference match mechanism 232 and a
dependency list mechanism 266.

The relationship table mechanism 226 creates the relation-
ship table in the database 214 to provide a matching of the
public symbols table with the referenced symbols table. The
relationship table shows where a symbol is publicly defined
and where the symbol is referenced. The relationship table
may be used for creating a dependency graph for a model.

The relationship table mechanism 226 is provided with the
cause of the change (i.e. add, remove, or change) and an

US 9,250,864 B2

9

identifier for the file (i.e. name, location, etc.) If the cause is
remove or change then the relationship table mechanism 226
removes the public symbols defined in the file 204 from the
relationship table as well as all references to symbols in the
file 204. References to the public symbols in the file 204 are
validated by the dependency validation mechanism 208.

The dependency validation mechanism 208 checks the
dependencies between files to determine the effects of the
change. The reference match mechanism 232 receives the
location and indicator for the file 204 and checks the relation-
ship table to determine if any files in the model depend on
public symbols that were defined by the file 204. If such a
dependency exists, the newly added public symbol in the
public symbol table may resolve previously unresolved
dependencies or may cause a previously resolved dependency
to be multiply resolved. A dependency in a file is considered
to be resolved when the location of the file containing the
actual definition (as opposed to proxy definitions) of the
symbol which is depended upon is known. Conversely, a
dependency is considered to be unresolved when the defini-
tion of the symbol in the file is not located in the public
symbols table, thus is not known. A multiply resolved depen-
dency is considered to be when there appears to be multiple
definitions of the symbol in the public symbol table. The
reference match mechanism 232 examines the public symbol
table, the reference symbols table and the relationship table to
determine if all of the symbols referenced by the file are
defined. If there is a reference to an undefined symbol in the
file or if there appears to be multiple definitions of a symbol,
then an error may be generated to inform the user of the
situation. The validation mechanism 234 stores resolved and
multiply resolved dependencies in the relationship table as
input for future change validations.

The reference match mechanism 232 performs matching
by one of two ways: based on the referenced symbols table or
based on the public symbols table. When the reference match
mechanism 232 performs matching based on the referenced
symbols table, the referenced symbols table is searched to
obtain all references to symbols made by the file 204. For each
reference, the public symbols table is searched to locate
matching symbols that resolve the reference. This produces a
location of the definition of each symbol referenced by the file
204. The location of these files are inserted in the relationship
table as being “down” files to the current file 204 as they are
the files on which the current file 204 is dependent. If there is
not exactly one match for the reference symbol in the public
symbols table then an error has occurred and a user is
informed of this situation. When the reference match mecha-
nism 232 performs matching based on the public symbols
table, the public symbols table is searched to obtain all public
symbols defined in the file 204. For each reference, the ref-
erenced symbols table is searched to locate references to the
symbols defined by the file 204. Each file containing a refer-
ence to a symbol define in the current file 204 is added to the
relationship table as “up” files for the current file 204 since
these files depend on the current file.

The dependency list mechanism 266 creates a dependen-
cies list for the file 204 that is stored in the database 214. The
dependencies list contains a list of all files that depend on the
symbols defined by the file 204. The dependencies list may be
an existing list that is maintained or it may be the result of a
query made to the relationship table each time the depen-
dency information is requested.

The modeling mechanism 210 creates and updates the
model based on the files that form the model. The modeling
mechanism 210 comprises a generate model mechanism 242.
The generate model mechanism 242 generates a new model

10

15

20

25

30

35

40

45

50

55

60

65

10

on the basis of newly incorporated files or updates the model
on the basis of changed or removed files.

During the creation, changing or parsing of the model, the
definition of a symbol referenced by the file 204 may be
requested. The symbol resolve mechanism 250 obtains such
definitions for references from the definition set in the data-
base 214.

FIGS. 3A to C show a method 300 for incorporating the file
204 into the integrated development environment 200 shown
in FIG. 2. The file 204 is loaded into the IDE 200 as an input
stream in step 302. A list of all of the public symbols in the file
204 is made in step 304 and a list of all of the referenced
symbols in the file 204 is made in step 306.

The cause for updating the file 204 in the IDE 200 is
determined in step 308 as being one of “remove,” “change,” or
“add.” If the file 204 was updated because of a change to the
file 204 or a request to removed the file 204 from the model or
because of a change in the file 204, as determined in step 310,
then the public symbols in the list are removed from the public
symbols table in step 312. The referenced symbols are
removed from the referenced symbols table in step 314. The
definitions in the definition set for the public symbols in the
list are removed in step 316. The relationships table is vali-
dated in step 318 to remove public symbols in the public
symbols list and referenced symbols in the referenced sym-
bols list from the relationships table.

Ifthe reason for updating the file 204 is because the file 204
changed or was added, as determined in step 320, then it is
determined in step 322 ifthe public symbols in the file 204 are
defined in the definition set. If the public symbols are defined
in the definition set then it is determined in step 324 if this is
an actual definition or a proxy definition. If the definition is a
proxy definition then the file 204 is parsed to extract the actual
definition of the public symbol therefrom in step 326. The
actual definition is then inserted into the definition set to
replace the proxy definition in step 328.

Ifthe public symbol was not in definition set as determined
in step 322 then the file 204 is parsed in step 330 to extract the
public symbol definition. The extracted public symbol defi-
nition is added to the definition set in step 332.

After the public symbol definitions have been added to the
definition set, or if a previous entry in the definition set for the
public symbol was an actual definition, step 334 determines if
there are referenced symbols in the referenced symbols list
that have definitions in the definition set. If these definitions
are proxy definitions, as determined in step 336, then the file
204 is parsed to extract information on the referenced symbol
therefrom in step 338. A proxy definition is created in step
340 from this extracted information and is inserted in the
definition set in step 342. The created proxy definition may
either be a new proxy definition based solely on the informa-
tion obtained from the parse in step 338 or the existing proxy
definition may have been enhanced by the extracted informa-
tion.

If there is no definition in the definition set for the refer-
enced symbol as determined in step 334 then the file 204 is
parsed to extract information on the referenced symbol in step
344. This information is used to create a proxy definition for
the referenced symbol in step 346 which is added to the
definition set in step 348.

After definitions have been added to the definition set for
referenced symbols or a previous definition for the referenced
symbol in the definition set was an actual definition or there
were no referenced symbols in the file 204, the public sym-
bols in the public symbols list are stored in the public symbols

US 9,250,864 B2

11

table in the database 214 in step 350. The referenced symbols
in the referenced symbols list are stored in the referenced
symbols table in step 354.

Relationships between the public symbols in the public
symbols table and referenced symbols in the referenced sym-
bols table are determined in step 354. These relationships are
inserted into the relationships table in step 356.

The relationships table is validated in step 358 by matching
symbols definitions and references. This validation may be in
either an upwards direction (as shown in FIG. 5) or a down-
wards direction (as shown in FIG. 4) or both.

A list of the files that are dependent on the public symbols
in the file 204 is created in step 360. After the dependencies
list is created or if the reason for updating the file 204 was not
“change” or “add” as determined in step 320, then processing
of the model in the IDE 200 continues in step 362.

FIG. 4 shows a method 400 for validating the file 204 in a
downward direction. All of the referenced symbols in the file
204 are located in step 402. The public symbols table is
searched in step 404 to locate the referenced symbols from the
file 204 to see if the file containing the definition for the
referenced symbol can be determined. If the referenced sym-
bol is found in the public symbols table, as determined in step
406, then the file location of the referenced symbol definition
is inserted in the relationships table for the referenced symbol
as being a “down” file, or the file containing the actual defi-
nition for the symbol in step 408. If the referenced symbol is
not found in the public symbols table, as determined in step
406, then an error message is produced for the user since there
is no definition for the referenced symbol in the IDE 200 in
step 410.

FIG. 5 shows a method 500 for validating the file 204 in the
upward direction. All of the public symbols in the file 204 are
located in step 502. The referenced symbols table is searched
in step 504 to locate the public symbols from the file 204 to
see if there are any files that reference or use the public
symbols. If the public symbol is found in the referenced
symbols table, as determined in step 506, then the location of
the file containing the reference of the public symbol is
inserted in the relationships table for the public symbol as
beingan “up” file, or a file containing a reference to the public
symbol in step 508. If the public symbol is not found in the
referenced symbols table then processing of the model in the
IDE continues in step 510.

FIG. 6 is a pictorial representation of the contents of the
database 214 of the IDE 200. The database 214 contains the
public symbols table 602, the referenced symbols table 604,
the relationships table 606, the definition set 608 and the
dependencies lists 610.

It is apparent to one skilled in the art that numerous modi-
fications and departures from the specific embodiments
described herein may be made without departing from the
spirit and scope of the invention.

The invention claimed is:

1. A computer program product embodied in a computer
readable storage medium for validating a relationships table,
the computer program product comprising the programming
instructions for:

5

20

25

30

35

40

45

50

55

12

generating a relational schema of symbols in the program
code file based on a framework for models in an inte-
grated development environment, the schema compris-
ing at least two related tables, wherein the two related
tables comprise a public symbols table and a referenced
symbols table;

determining a relationship between the two tables in the

relational schema;

adding definitions from the program code file for symbols

in the relational schema to a definition set retaining
definitions of symbols;

producing proxy definitions for use with the definition set

for each symbol in the program code file without a
definition in the definition set;

generating the relationships table in the relational schema

containing the relationship between the at least two
tables; and

verifying the relationships table by matching the symbols

definitions and references, wherein a validation removes
public symbols and referenced symbols from the rela-
tionships table.

2. The computer program product as recited in claim 1,
wherein the programming instructions for generating the
relational schema further comprises the programming
instructions for:

generating the public symbols table in the relational

schema for the public symbols in the program code file,
the public symbols being symbols having a definition in
the program code file; and

generating the referenced symbols table in the relational

schema for the referenced symbols in the program code
file, the referenced symbols being symbols only referred
to in the program code file.

3. The computer program product as recited in claim 1,
wherein the program code file contains the public symbols
having a definition in the program code file and the referenced
symbols being only referred to in the program code file, and
wherein the programming instructions for adding definitions
comprises the programming instructions for:

parsing the program code file to extract definitions for the

public symbols therein; and

adding the extracted definitions to the definition set.

4. The computer program product as recited in claim 1,
wherein the program code file contains the public symbols
having a definition in the program code file and the referenced
symbols being only referred to in the program code file,
wherein the programming instructions for producing proxy
definitions comprises the programming instructions for:

determining if the definition set contains a definition for the

referenced symbols;

parsing the program code file to extract information about

the referenced symbols therefrom;

formulating a proxy definition for the referenced symbols

without a definition in the definition set based on the
extracted information; and

adding the formulated proxy definition to one of the defi-

nition set or a changed program code file.

#* #* #* #* #*

